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ABSTRACT
The coalescent process can describe the effects of selection at linked loci only if selection is so strong

that genotype frequencies evolve deterministically. Here, we develop methods proposed by Kaplan, Darden,
and Hudson to find the effects of weak selection. We show that the overall effect is given by an extension
to Price’s equation: the change in properties such as moments of coalescence times is equal to the
covariance between those properties and the fitness of the sample of genes. The distribution of coalescence
times differs substantially between allelic classes, even in the absence of selection. However, the average
coalescence time between randomly chosen genes is insensitive to the current allele frequency and is
affected significantly by purifying selection only if deleterious mutations are common and selection is
strong (i.e., the product of population size and selection coefficient, Ns � 3). Balancing selection increases
mean coalescence times, but the effect becomes large only when mutation rates between allelic classes
are low and when selection is extremely strong. Our analysis supports previous simulations that show that
selection has surprisingly little effect on genealogies. Moreover, small fluctuations in allele frequency due
to random drift can greatly reduce any such effects. This will make it difficult to detect the action of
selection from neutral variation alone.

WE develop a diffusion approximation, first intro- (Maynard Smith and Haigh 1974; Kaplan et al. 1988;
Barton 1998). However, the deterministic approxima-duced by Kaplan et al. (1988), which extends the

coalescent to take account of arbitrary forms of selec- tion plainly fails when selection is weak or absent. Con-
sider the relationships between genes that can be of twotion. Kingman (1982) introduced the coalescent pro-

cess as a simple description of the genealogical relation- allelic types. Even if these alleles are neutral, and so
represent an arbitrary labeling of the genes, two genesships among a set of neutral genes. Although the theory

of the coalescent has developed largely independently, of the same allelic type are likely to be substantially more
closely related than are two genes of different type.it is closely related to the classical concept of identity
Moreover, the average relationship between randomlyby descent (Nagylaki 1989). The coalescent extends
chosen genes depends on the allele frequency, since annaturally to describe structured populations, in which
allele that happens to have increased by chance willgenes may be found in different places or embedded
cause a selective sweep just as if it had increased by se-in different genetic backgrounds. The effects of selec-
lection. Although relationships averaged over the distri-tion can easily be included, provided that it is so strong
bution of allele frequencies and over allelic classes mustrelative to random drift that the frequencies of different
be unaffected by the labeling of neutral alleles, relation-genetic backgrounds can be approximated as changing
ships do depend on allelic class and on allele frequencydeterministically (i.e., the product of population size
(e.g., Slatkin 1996).and selection coefficient, Ns � 1; Kaplan et al. 1988;

We usually do not know which alleles are selectedHudson 1990).
and so can observe relationships only among randomlyIn some cases, assuming that the genetic or spatial
chosen genes in populations with random genotypestructure of a population changes deterministically is a
frequencies. However, with selection, even the averagegood approximation. For example, when a single favor-
relationships are distorted and can be calculated usingable mutation arises and spreads, it carries with it any
the structured coalescent only when selection is muchlinked variants. The effects of such “selective sweeps” on
stronger than drift. Weak selection (Ns � 1) spreadgenetic variability can be accurately described by assum-
across many loci can have significant cumulative effectsing that the new allele increases exponentially, even
(McVean and Charlesworth 2000). Even when Ns isthough it is subject to strong random fluctuations in
large, fluctuations may still be important. For example,the early generations, when it is present in few copies
Barton and Navarro (2002) showed that the effects
of balancing selection at multiple loci are strongly af-
fected by drift even when Ns is extremely large, because
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When selection and drift are of comparable strength, boundary conditions for their equations, so that they
could not be solved using standard software; however,a purely coalescent-based approach becomes compli-

cated. Neuhauser and Krone (1997) and Krone and Darden et al. (1989) do provide an alternative numeri-
cal algorithm. Barton et al. (2003) give a rigorous justi-Neuhauser (1997) have shown that certain kinds of

selection can be represented by “ancestral graphs,” fication for Kaplan et al.’s (1988) diffusion equations,
including the necessary boundary conditions. In this ar-which are constructed by allowing branching as well as

coalescence as one moves back in time, followed by a ticle, we show that in the absence of selection, the over-
all average relationship between random genes in aculling of potential ancestors to generate the genealogy.

This method is computationally demanding, especially random population is the same as under simple neutral-
ity. This must of course be the case, since labeling awith strong selection, because of the proliferation of

ancestral lineages. Slade (2000a,b, 2001) and Fearn- pair of neutral alleles cannot affect the distribution of
genealogies. However, this result extends to give a gen-head (2001) have introduced modifications that make

calculations feasible for stronger selection. Neverthe- eral expression for the effect of selection on the gene-
alogy, which can be seen as an extension of Price’sless, this method does not seem likely to lead to a deeper

analytical understanding, which would extend to more (1970) equation.
The analysis is of a neutral locus that is linked to ageneral kinds of selection and more complex genetics.

Donnelly and Kurtz (1999a) and Slade (2001) have single selected locus that carries two alternative alleles.
(Setting the recombination rate to zero allows us toalso shown how recombination can be included with

selection in the algorithm. However, despite these vari- follow genealogies at a single selected locus). Essentially
the same equations apply to probabilities of identity inous advances, the method is still computationally inten-

sive for strong selection: for example, with overdomi- state, assuming infinite-allele mutation at the neutral
locus, the mean and higher moments of coalescencenance, only Ns � 10 or so can be simulated (Slade

2000a). Moreover, it is limited to certain kinds of selec- time, and the full distribution of coalescence times. The
equivalence between these can be seen by noting thattion: linear frequency dependence or selection on dip-

loids requires branching into three potential ancestors the identity in state is the generating function for the
distribution of coalescence times. Our numerical resultsinstead of two, and, more generally, a kth order polyno-

mial dependence of haploid fitness on allele frequency are mainly for the distribution of pairwise coalescence
times, but in the last part of the article we consider therequires branching into (k � 2) virtual ancestors. In

practice, anything beyond the simplest kind of epistasis distribution of the total length of a large genealogy.
We begin by setting out the diffusion approximationor frequency dependence is ruled out.

Other recent simulation techniques follow the state for identities in allelic state; the equations for coalescence
times are essentially the same. We then change variablesof the whole population backward through time. Don-

nelly et al. (2001) discuss methods for importance sam- to work with (i) the average over randomly chosen pairs
of genes, (ii) differences associated with one or the otherpling, which start with the well-understood neutral pro-

cess, and apply a bias that represents the action of allele, and (iii) differences within classes vs. between
classes. This change of variables leads to a simple for-selection. This is most efficient when selection is weak.

Slatkin (2001) begins by reversing the selective pro- mula for the expectation over the stationary distribution
and to approximations for strong mixing between classescess, which should allow stronger selection to be repre-

sented accurately. Because the diffusion is reversible and for strong selection. Throughout this first part of
the article, two simple examples are used to illustratewith additive selection, the procedure is exact in this

case. With nonadditive selection, Slatkin (2001) uses the derivations (two genes sampled from either a neu-
tral locus or a locus under balancing selection). In thea procedure that approximates the correct backward dif-

fusion. One can also follow the evolution of population later sections, a wider range of parameters is explored.
allele frequencies back through time and use the Me-
tropolis-Hastings algorithm to sample the appropriate

THE MODEL
distribution of frequencies. Under the diffusion approx-
imation, the probability of any particular path is given Consider selection on a single locus that carries two

alleles, labeled P, Q. This is linked to a neutral secondby a Gaussian distribution of velocities around their de-
terministic expectation, which approximates the prod- locus, with recombination rate r. Allele frequencies at

the selected locus are p, q at the beginning of the genera-uct of Markov transition matrices (Schulman 1981;
Rouhani and Barton 1987). tion. For simplicity, assume that selection acts on hap-

loids; however, detailed assumptions about the life cycleKaplan et al. (1988) introduced a more direct ap-
proach to the problem, by following relationships be- do not affect the diffusion approximation. Numerical

examples assume purifying selection with fitnesses of Q ,tween genes within and between allelic classes, conditional
on the frequencies of those classes in the population. P of 1:1 � s; balancing selection is modeled by assuming

frequency dependence such that s is replaced by s(p0 �However, their approach has not been taken up. This may
be partly because Kaplan et al. (1988) did not specify p). This is close to a model of overdominance with
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TABLE 1

Summary of notation

N Effective population size T Scaled time, t/2N
� Sum of mutation rates, �Q→P � �P→Q U Scaled mutation rate, N�
p Equilibrium under mutation, �Q→P/�
s Selection favoring allele P S Scaled purifying selection, Ns
sb Strength of balancing selection Sb Scaled balancing selection, Nsb

p0 Equilibrium under balancing selection
� Rate of mutation to new neutral alleles V Scaled neutral mutation rate, N�
r Recombination rate R Scaled recombination rate, Nr
fj,k Identity in allelic state among j genes of f Average identity, � j�k

j�0 q j pk�j�k
j � fj,k

type Q, k of type P
Jj,k Expected total length of a genealogy J Expected total length, averaged over

relating j, k genes of type Q, P samples
T Total length; expected value is J

	0,2, 	1,1, 	2,0 Distribution of pairwise coalescence times 
 Mean pairwise coalescence time;
2
 � T


2,0, 
1,1, 
0,2 Mean pairwise coalescence time 	 Distribution, averaged over samples
E[ ] Expectation over the stationary density 
 Mean pairwise coalescence time;

2
 � J
n No. of genes in the sample �n Half the regression of identity on

allele frequency in the sample
�J

n The same, but for total length
�


n The same, but for mean pairwise
coalescence time

L Differential operator, � Difference in identity within vs.
between classes, fPP � 2fPQ � fQQ2(U(p � p) � Spq) �

pq
2

�p

�
 The same, for mean pairwise
coalescence time

diploid fitnesses 1 � sp0:1:1 � sq0, with p0 � q0 � 1. (The re- infinite-alleles mutation at rate �. fj,k is also the generat-
ing function for the distribution of total length of thelation between models of overdominance and linear fre-

quency dependence is discussed by Neuhauser 1999.) genealogy and so can be used to find the distribution
Mutation then occurs at a rate �p from Q alleles to P of the number of segregating sites.
alleles and �q in the opposite direction. (In terms of Kaplan et al. (1988, Equation 20) provide a system
the actual mutation rates � � �Q→P � �P→Q , p � �Q→P/�; of diffusion equations for fj,k without recombination.
the equilibrium under mutation alone is p.) Where we This system is extended to include recombination by
consider identity in allelic state, mutation to novel alleles Hudson and Kaplan (1988). These give
occurs at a rate � at the linked neutral locus. Diploid

0 � �2V( j � k)fj,k � � j( j � 1)
2

( fj�1,k � fj,k)
q

�
k(k � 1)

2
( fj,k�1 � fj,k)

p �zygotes are formed by random union and undergo meio-
sis. Finally, 2N gametes are sampled to found the next

� 2� jp�Uq
q

� R �( fj�1,k�1 � fj,k) � kq �U p
p

� R �( fj�1,k�1 � fj,k)�generation. (We keep the convention that population size
is 2N genomes, corresponding to N diploid individuals.)

� 2(U(p � p) � Spq)
�fj,k

�p
�

pq
2

�2 fj,k

�p2This discrete time model is defined in more detail by (1)
Barton et al. (2003), who also set out the analogous

with f0,1 � f1,0 � 1 by convention. Barton et al. (2003)continuous-time Moran model. Our notation is summa-
give a rigorous derivation for this stationary version, forrized in Table 1.
n � 2.In the limit where selection, drift, and mutation are

The terms involving V � N� represent the steady decayweak, we can take a diffusion approximation to this
in identity due to mutation at the neutral locus. Themodel. We scale selection, mutation, and recombina-
positive terms ( fj�1,k � fj,k)/q, ( fj,k�1 � fj,k)/p representtion relative to N, and time relative to 2N, so that T �
the increase in identity due to coalescence within allelict/2N, S � Ns, R � Nr, U � N�, and V � N�. [Note that
classes. The terms involving differences in identityBarton et al. (2003) scale time relative to N genera-
( fj�1,k�1 � fj,k), ( fj�1,k�1 � fj,k) represent the movement oftions.] Suppose that we sample n genes. We need to
genes between allelic classes by mutation of allelicfollow the probability fj,k that j genes of type Q , and k
classes and by recombination. Note that mutation fromgenes of type P, are identical in state at the neutral

locus. We assume this neutral locus to be subject to allele Q to allele P dominates recombination when allele
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P is rare [term U(p/p) � R in Equation 1], because most
copies of P will in that case have arisen as recent muta-
tions from Q. Finally, the last two terms represent the
proportion of populations currently at allele frequency p
that derive from populations with a different frequency;
this process is approximated as a backward diffusion.

In principle, the full distribution of genealogies can
be recovered by assigning a notional mutation rate to
each node, {�i , �ij , �ijk , . . .} say, and by following identities
among sets of genes that are either in background Q or
P ( f{a},{b,c}, say). Then, terms such as j( j � 1)/2 in Equation
1 separate out into distinct terms, corresponding to
different permutations of loci over backgrounds. This
gives a set of equations in a very large number of vari-

Figure 1.—Comparison among three methods for calculat-
ables and, worse, an extremely large number of f ’s: all ing identities as functions of allele frequency. The dots show
possible partitions of the lineages must be tracked sepa- identities calculated by simulation of a neutral allele over

50,000 generations and by solution of a matrix recursion; therately. So, numerical solution is difficult for even three
values are barely distinguishable on this scale. The thin solidgenes. This approach might be useful, however, for de-
lines show the identities calculated using the diffusion approxi-riving simpler equations that describe particular fea- mation, Equations 1. The thick curve shows the stationary

tures of the distribution of genealogies. distribution. (This distribution is divided by 4 for clarity; the
As detailed in Barton et al. (2003), the probabilities probability of being in the range 0.1 � p � 0.9 is 0.59.) 2N �

100, � � � � 0.005, p � 0.5; thus, U � V � 0.25.of identity are the minimal positive solutions to the
equilibrium version of Equations 1. This implicitly speci-
fies the boundary conditions for the system, but to ob-

Figure 1, top left). The approximation is expected totain numerical solutions, we require them explicitly.
fail for p � 1/N, since only a small number of copiesConsider first small p. The right-hand side of Equations
are involved. A similar comparison for 2N � 1000 shows1 is dominated by terms in 1/p. Solving for these terms
that the discrepancy is then restricted to a narrowerleads to
region, as expected.

fj,k �
(k � 1)fj,k�1 � 4N�pfj�1,k�1

(k � 1) � 4N�p
(k � 0)

IDENTITIES, TREE LENGTHS, AND PAIRWISE
COALESCENCE TIMESfj,0 �

j( j � 1) fj�1,0 � 4N�p�p fj,0

j( j � 1) � 4Nj�
. (2)

First, consider probabilities of identity in allelic state
under the infinite-alleles model. There are substantialSimilarly, as p tends to 1, the terms in 1/q dominate

and we obtain analogous boundary conditions to Equa- differences between identities involving different allelic
classes: identities between classes are much lower thantions 2.

Numerical methods for solving Equations 1 and 2 are those within (compare the lower curve for f1,1 with the
upper curves for f0,2, f2,0). Identities also vary substantiallyexplained in the appendix. Figure 1 gives a check on

these methods for two genes. Three methods for calcu- with allele frequency. Within-class identity decreases
from �1 when the allele is present in a few copies, downlating identities within and between neutral allelic

classes are compared. First, identities can be calculated to (1 � 4Upf1,1)/(1 � 4Up) (Equation 2) when it is fre-
quent enough for the diffusion approximation to holdconditional on allele frequencies, simulated over 50,000

generations, for a population of 2N � 100 (Figure 1, (p � 1/N), and then down to a value somewhat greater
than the neutral expectation of 1/(1 � 4V) when thedots). Allele frequencies were simulated over 50,000

generations, using the exact backward transition matrix allele nears fixation. The between-class identity neces-
sarily approaches that within the commonest class nearcalculated for the Wright-Fisher model. Second, the

identities can be calculated by solving the discrete equiv- fixation and decreases in between, because there is then
a rapid influx into the rarer class by mutation from thealent of Equation 1, which gives exact results for the

Wright-Fisher model. This involves linear equations for commoner class.
Note that there is considerable variation in the identi-a set of three vectors for f0,2 , f1,1 , f2,0 , each of length

2N � 1. The results fit closely with those estimated by ties, and hence in the distribution of coalescence times,
in any particular generation of a simulated populationsimulation and are indistinguishable in Figure 1. Finally,

the diffusion approximation (Equation 1) was used. (Figure 2, top). This arises from the random history of
allele frequencies (Figure 2, middle) and is an extraThis fits closely over most of the range (compare solid

curves with dots). However, it underestimates identities source of variation, over and above the intrinsic varia-
tion in the actual coalescence time. The latter is a samplebetween genes in rare allelic classes (e.g., f0,2 for p → 0;
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Figure 3.—Comparison among three methods for calculat-
ing identities as functions of allele frequency, under balancing
selection. Parameters are as in Figure 1, except that there is
balancing selection with coefficient s(p0 � p), s � 0.08, p0 �
0.7. The stationary distribution is now concentrated around
p0; the probability of 0.1 � p � 0.9 is increased to 0.74.

little effect in reducing the identities f2,0 , f1,1 , f0,2 . The
stationary distribution is now concentrated around p0 �
0.7; because identities depend strongly on allele fre-
quency, this might be expected to alter the identity be-
tween random pairs of genes, averaged over the station-
ary distribution. However, balancing selection reduces
this average to only E[f ] � 0.4977 , relative to the neu-
tral value of 1/(1 � 4V) � 0.5. This is because the
average identity f � q 2f2,0 � 2pqf1,1 � p 2f0,2 is almost
independent of allele frequency (e.g., Figure 2, bottom).Figure 2.—An example of the time-course of identities
We consider this issue in more detail below.(top), allele frequencies (middle), and average identity (bot-

tom), from simulations of a neutral allele (2N � 100, � � Similar equations can be derived for the probability
� � 0.005, p � 0.5, as in Figure 1). In the top, the bottom density of total length of the genealogy, 	j,k. This is a
thick line shows the identity f1,1 between allelic classes, over

function of the total length, T, and current allele fre-generations 2000–4000. The top two lines show the within-
quency, p. After a long time, the density approaches aclass identities f2,0, f0,2. Around generation 3000, allele P is lost
steady state, which satisfies(middle); then the identity f0,2 is set to 1, and the identities

f1,1, f2,0 become equal. The converse pattern is seen when allele
�(j � k)

�	j,k

�T � � j( j � 1)
2

(	j�1,k � 	j,k)
q

�
k(k � 1)

2
(	j,k�1 � 	j,k)

p �Q is lost, around generations 2000 and 4000. Although the
identities within and between classes fluctuate greatly with
allele frequency, the average identity stays close to the ex- � 2� jp �U q

q
� R �(	j�1,k�1 � 	j,k) � kq �U p

p
� R�(	j�1,k�1 � 	j,k)�

pected value f � 1/(1 � 4N�) � 0.5.
� 2(U(p � p) � Spq)

�	j,k

�p
�

pq
2

�2	j,k

�p2
.

(3)
from a distribution that itself fluctuates with allele fre- At T � 0, we have
quencies. The smooth curves shown in Figure 1 are the
identities conditional on current allele frequency and

	j,0 �
j( j � 1)

2qare an average over the distribution of past fluctuations
in allele frequency. Calculation of the variance in pair-

	j,k � 0 for j � kwise identity as a function of current allele frequencies
would require consideration of associations among sets

	0,k �
k(k � 1)

2p
. (4)of four genes.

Figure 3 shows the same comparison as in Figure 1,
The boundary conditions at T � 0 set the rate ofbut with balancing selection of strength Sb � Nsb � 4

coalescence within allelic classes as being inversely pro-toward an equilibrium point p0 � 0.7. Again, the three
portional to the frequency of the class. (Recall that timemethods agree to high accuracy, except for identities
has been scaled relative to 2N). The partial differentialwithin rare allelic classes. Even though selection is much

stronger than mutation and drift, it has surprisingly equations themselves have essentially the same form as
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Figure 4.—The distribution of coalescence times, calcu- Figure 5.—The distribution of coalescence times between
randomly chosen pairs of genes (thick line) compared withlated from Equations 3, for a locus under balancing selection.

The three parts show distributions at p � 0.01, 0.1, 0.5 (left the neutral expectation Exp[�T] (thin line). Parameters are
for a locus under balancing selection, as for Figures 3 and 4.to right). In each, the thick line shows the between-class distri-

bution 	1,1, the dashed curve shows 	2,0, and the thin solid
curve shows 	0,2 (U � 0.25, p � 0.5, S � 4, p0 � 0.7, as in
Figure 3). Time is scaled relative to 2N generations.

p0 � 0.7), coalescence times become slightly longer than
the neutral expectation. As P approaches fixation, co-for the identities and represent the movement of genes
alescence times again become slightly shorter than inbetween allelic classes and the diffusion of populations
the absence of selection and allelic structure. Overall,between allele frequency states.
there is little change: in this example, balancing selec-Figure 4 shows the solution to Equations 3, for the
tion increases mean coalescence time by 13.9%.same parameters as Figure 3. The rate of coalescence

The relation between Equations 1 and 3 can be under-between allelic classes, 	1,1, is necessarily zero, and so
stood by noting that the identity in state is the generat-the distribution 	1,1 passes through the origin (Figure
ing function for the distribution of coalescence times,4, thick lines). However, when one or the other allele
with scaled parameter 4V (i.e., f � �∞

0 exp[�4VT ]	dT.is rare, genes in the rarer class are likely to be descended
This can be confirmed by integrating the product offrom genes in the common class relatively recently.
Equation 3 with Exp[�4VT] over T. The moments ofHence, 	1,1 rapidly approaches 	2,0 when P is rare (Fig-
coalescence times can be recovered by taking differen-ure 4, top left and bottom right). Coalescence times
tials of f at V � 0. For example, the expected total lengthwithin a rare allelic class are likely to be very short, un-
J � � ∞

0 T	[T ]dT is given byless the two genes derive from the common class via
recent mutation. Because the mutational flux from com-

0 � n � � j( j � 1)
2

( Jj�1,k � Jj,k)
q

�
k(k � 1)

2
( Jj,k�1 � Jj,k)

p �mon to rare is high, these two possibilities have compara-
ble probability (see two terms �1/p in Equation 1).

� 2� jp(U
q
q

� R)( Jj�1,k�1 � Jj,k) � kq(U
p
p

� R)( Jj�1,k�1 � Jj,k)�Thus, for small p the distribution 	0,2 is a mixture of a
singularity at zero and a component proportional to

� 2(U(p � p) � Spq)
�Jj,k

�p
�

pq
2

�2Jj,k

�p2 (5)	2,0 (Figure 4, bottom curve in top left and bottom
right). At intermediate frequency, both within-class dis-

with J1,0 � J0,1 � 0 by convention. As p → 0, mean totaltributions are close to the neutral expectation, Exp[�T]
length tends to(Figure 4, middle).

Figure 5 compares the distribution of coalescence times
Jj,k �

(k � 1) Jj,k�1 � 4UpJj�1,k�1

(k � 1) � 4Up
(k � 0)between randomly sampled pairs of genes, 	 � q2	2,0 �

2pq	1,1 � p2	0,2, with the neutral formula Exp[�T], for
the same example of balancing selection. When allele Jj,0 �

2
j � 1

� Jj�1,0 �
4Up�p Jj,0

j( j � 1)
. (6)

P is rare, the coalescence time tends to be shorter, while
These limits can be found directly or from Equationsas the frequency approaches the intermediate value

where the population is most likely to be found (p � 2. Note that for n � 2 genes, the expected total length
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0 � 1 � (1 � 4V) f � L(�pf � 4�) � 4pqS� (8a)

0 � �2�1 � 2V � U � U
(q � p)

pq
(p � p) � R ��

� L(�p� � 2�) � (p � q � 2Spq)� (8b)

0 �
(1 � f )

pq
� (3 � 4V � 4U � 4R � 4S(p � q))�

� L��p� � 2
(p � q)

pq
� � �

(p � q)
pq

(2� � pq�p�),

where L � �2Spq � 2U(p � p) �
pq
2

�p � . (8c)
Figure 6.—Mean coalescence time within and between al-

lelic classes, plotted against allele frequency. The thin lines Each variable is augmented by a diffusion term, L( ).
are for neutral alleles, while the thick lines are for balancing As is shown in Equation 9, the average of this diffusionselection S � 4, p0 � 0.7; U � 0.25 as before. The top pair of

term over the stationary distribution is zero; thus, itcurves are for genes in different allelic classes (
1,1). The bot-
shifts the variable without producing a net change. Thetom two pairs are for mean coalescence time within classes

(dashed curves, 
2,0; solid curves, 
0,2). Mean coalescence time first equation shows that average identity is augmented
between two P genes, 
0,2, decreases to 4Up
1,1/(1 � 4Up ) as by 4pqS�[p], which is the product of the change in
p → 0; conversely, 
2,0 → 4Uq
1,1/(1 � 4Uq ) as p → 1. allele frequency due to selection, and the difference in

identity between genes associated with P rather than
with Q. Net identity increases if a higher identity is

of the genealogy is twice the mean pairwise coalescence associated with an allele favored by selection. The cru-
time, which we denote by 
. cial quantity, then, is �. The second equation shows

Figure 6 shows how the mean coalescence time changes that this is reduced by recombination and mutation, es-
with allele frequency, with and without balancing selec- pecially near the edges, and augmented by a term pro-
tion. The mean coalescence time between genes in dif- portional to �, which is the difference in identity within
ferent allelic classes is much greater than that within and between allelic classes. The last equation, for �,
classes, but approaches the same value as within the com- shows that it is augmented by coalescence, especially at
moner class as that class approaches fixation. Within- the boundaries, in proportion to (1 � f )/pq. It is also
class coalescence times approach 4UpJ1,1/(1 � 4Up ) as augmented by a term proportional to �.
the allele becomes rare. This value is determined by a The equations for the distribution of coalescence
balance between the rapid rate of coalescence within times are obtained by setting V � 0 and dropping the
rare classes and the rapid influx of copies by mutation terms that do not involve f, �, or � (i.e., 1 in Equation
from the commoner class. 8a and 1/pq in Equation 8c). Boundary conditions at


 � 0 are that 	 � 1, � � 0, and � � 1/pq. The expected
total length (which is twice the mean pairwise coales-
cence time for n � 2) is given by the same equationsA CHANGE OF VARIABLES
as above, but setting V � 0, and subtracting 1/pq from

To make some approximations, and to understand
Equation 8c.

average identity, it is helpful to change variables, as
Figure 7 shows the transformation for mean coales-

follows. First, consider the pairwise case. Let
cence time, to the variables 
, �
, �
 (Table 1). The
mean coalescence time between randomly chosen pairsf � q2f2,0 � 2pqf1,1 � p2f0,2, f2,0 � f � 2 p� � p2�
of genes varies rather little with allele frequency and� � �qf2,0 � (q � p)f1,1 � pf0,2, f1,1 � f � (q � p)� � pq�
increases only moderately with increasing balancing� � f2,0 � 2f1,1 � f0,2, f0,2 � f � 2q� � q2�. (7)
selection (Figure 7, top). This is because the equation
for 
 is driven mainly by the term 1 � 
, which leadsSimilar transformations apply for the expected total

length, J, and for the distribution of coalescence times, to the standard solution 
 � 1. The diffusion terms
L(�p
 � 4�
) redistribute 
 across the range of allele fre-	. The average identity among randomly chosen pairs

of genes is f ; � is the difference in identity between a quencies, but, as we show below, do not alter its average
value. The main driving term is small, because undergene associated with P and a random partner and a

gene associated with Q and a random partner; and � is balancing selection both S and � are zero somewhere
in the interior, and so their product is small when allelethe sum of the differences between identities of alleles

in the same classes and alleles in distinct classes. Equa- frequency is concentrated in the interior.
Figure 8 shows the same comparisons, but for puri-tions 1 transform to
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Figure 8.—Transformed representation of the mean coales-Figure 7.—Transformed representation of the mean coales-
cence time, for increasing strengths of purifying selection;cence time, for increasing strengths of balancing selection
parameters and notation are as in Figure 7. The thick curves(U � 0.25, p0 � 0.7). Top left, 
, the average over randomly
are for neutral alleles, and the successive thin curves are forchosen pairs of genes; bottom left, �
, the effect on mean
S � 0.25, 0.5, 1, 2, 4, 8.coalescence time of association with P rather than with Q; top

right, �
, twice the difference in mean coalescence time within
relative to between classes; bottom right, [p], the stationary
distribution. The thick curves are for neutral alleles, and the We immediately see that, in the neutral case (S � 0),
successive thin curves are for S � 1, 2, 4, 8, 16, 32. E[f ] is unaffected by the arbitrary labeling: it is given

by the standard formula from the neutral theory,
1/(1 � 4V). Selection will perturb average identity byfying selection. The overall mean 
 is affected little by
a proportion that depends on E[Spq�[p]]; this will beweak selection (S � 1, say). With stronger purifying
small for purifying selection, since � changes sign some-selection, mean coalescence time is substantially re-
where in the center. However, it will be large and nega-duced when the favorable allele becomes rare (Figure
tive for balancing selection, if the null point of selection8, left side of top left), but is slightly increased when
coincides with the null point for �. Then, both � andthe favorable allele is common. The average identity is
S will change sign near the center and so E[Spq�[p]] isinsensitive to selection when selection is weak because
negative throughout. Thus, balancing selection is ex-then �
 changes sign in the center and so its product
pected to reduce average identity.with Spq also changes sign; the net effect through the

The mean coalescence time is given by the samedriving term 4Spq�
 is thus small. As selection becomes
equation as Equation 9, but with V set to zero, and �
 �stronger, �
 becomes positive over a wider region, im-
p(
0,2 � 
1,1) � q(
1,1 � 
2,0):plying that the mean coalescence times involving genes

in the favored allelic class become longer. However, the E[
] � 1 � 4E[Spq�
[p]]. (11)
net effect on the pattern of 
 is hard to predict, because

Similarly, the distribution of coalescence times, aver-the diffusion term is strong. The next section sets out
aged over random pairs of genes and over the distribu-a simple result for the mean coalescence time, averaged
tion of allele frequencies, isover the stationary distribution, which necessarily does

not include this diffusion term. E[	[
]] � Exp[�
]

� 4 �



0
Exp[�(
 � 
�)]E[Spq�	[
�, p]]d
�.

THE NET EFFECT OF SELECTION (12)
A remarkably simple result is obtained by taking the The expected mean coalescence time can be calcu-

expectation of the average identity over the stationary lated either directly or by using the right side of Equa-
distribution, E[f ]. We know that the stationary distri- tion 11. In numerical calculations, the latter is more
bution satisfies the forward diffusion 0 � (2Spq � 2 accurate, both because it gives what is usually a small
(p � p)U) � �p((pq/2)). Integrating the first of Equa- deviation from the neutral expectation of 1 and because
tions 8 over the stationary distribution , we have the regions near fixation (where the stationary distribu-

tion diverges for Up, Uq � 1/4) do not contribute sig-0 � 1 � (1 � 4V)E[f ] � �L(�pf � 4�)dp
nificantly to the integral (since pq and �
 tend to zero

� 4E[Spq�[p]]. (9) at the boundaries). The boundaries do not contribute
to the deviation from neutrality because in these regionsIntegrating by parts, the third term vanishes, and we
selection is negligible relative to drift, and there is rapidhave
flow between backgrounds.

The relationships of Equations 9–12 extend to arbi-E[f ] �
1 � 4E[Spq�[p]]

1 � 4V
. (10)

trary numbers of genes in the sample. To be definite,
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consider the expected total length of the genealogy, Jj,k

(Equation 5). However, the same argument applies to
other properties of the genealogy, such as the identity
in state or the distribution of times to the most recent
common ancestor. As mentioned above, one can write
down the generating function for the complete density
in the same form, and so this result applies for any
quantities derived from it.

Summing over the binomial probability density for
the number of genes {j, k} sampled from each back-
ground, we obtain

Figure 9.—The perturbations to total expected tree length
0 � n �

n(n � 1)
2

( Jn�1 � Jn ) � 4Spq�J
n � L(�pJn � 4�n), caused by purifying selection, plotted against the number of

extant genealogies, j (bottom series of points). These are calcu-
lated from E[4pqS�j] (Equation 16). The top series of pointswhere Jn � �

j�k�n

q jpk�nj � Jj,k and �J
n �

1
2pq �

j�k�n

q jpk�nj �(k � np) Jj,k .
show the contribution to total expected tree length expected

(13) under neutrality, 2/j. Mutation rate is U � 0.5, p � 0.5, and
purifying selection S � 2; there is no recombination.

The first term n represents the increase in tree length
at a rate n, when n lineages are present. The second
term represents coalescence at a rate n(n � 1)/2; when
coalescence occurs, the tree length expected among extant. (As explained in the appendix, we use the in-
(n � 1) genes replaces that among n genes: ( Jn�1 � Jn). sensitivity of the genealogy to allele frequency fluctua-
The third term represents the perturbation to average tions in our calculations of terms involving large num-
tree length caused by selection. It is proportional to bers of genes.)
�J

n, which is half the regression of average tree length Equation 14 can be interpreted as an instance of
on the number of P alleles in the sample (i.e., of Jj,k on Robertson’s (1966) “secondary theorem of natural se-
k). The last term represents the effect of changes in lection,” which states that the increase in any quan-
allele frequency through time. tity caused by selection is equal to the covariance be-

Taking the expectation over the stationary distribu- tween that quantity and fitness. [This was independently
tion, the last term vanishes, and we obtain a recursion: developed into a general representation of selection

by Price (1970).] In terms of the original variables,
E[4Spq�J

n] � E[�j�k�nq jpk(n
j )S(k � np)Jj,k], which is equalE[ Jn] � E[ Jn�1] �

2
n � 1

�
2

n(n � 1)
E[4Spq�J

n]
to the covariance between the fitness of the sample of
n genes and the expected total length of the genealogy

� 2 �
n�1

j�1

1
j

� E �4Spq�
n

j�2

2
j( j � 1)

�J
J 	. (14) that relates these genes. (Here, relative fitness of a sam-

ple with k copies of allele P is sk, or 2Nsk � 2Sk when
rescaled.) Equation 14 shows that this covariance is ex-We see immediately that in the absence of selection
actly equal to the increase in the expected total lengththe expected total tree length is given by the neutral
caused by selection. Because essentially the same equa-formula, E[ Jn] � 2�n�1

j�2 (1/j). The perturbation due to
tions apply to the identity f, which can be viewed as theselection during the time when there are j lineages in
generating function of the genealogy, we can see thatthe genealogy is proportional to 2/j( j � 1), which is
relations similar to Equation 14 apply to any quantitiesthe expected time for which j lineages persist before
that are linear functions of the probability density ofcoalescence. This suggests that the effects of selection
genealogies (for example, the kth moments of coales-will primarily be on the deeper parts of the genealogy
cence times).(i.e., small j); however, it is not clear how �j changes

with j. Numerical calculations confirm our intuition that
the effects of selection decrease rapidly as j increases.

APPROXIMATIONSFigure 9 shows the successive perturbations due to selec-
tion for up to n � 50 genes, compared with the succes- There does not appear to be an explicit solution to
sive contributions 2/j under neutrality. The �j decrease Equations 1 or 8, even in the absence of selection. We
for j � 10, and so the net perturbation, which is further therefore explore several approximations, in the hope
reduced by the factor 2/j( j � 1), quickly becomes negli- that these might extend to more complex situations,
gible. The sum of the perturbations is �0.29, compared which are difficult to investigate numerically. We con-
with a neutral expectation of E[J ] � 8.96. Thus, purify- sider in turn the extremes of no mixing between allelic
ing selection reduces total tree length by only 3.3% in classes, assuming that change in allele frequency is negli-
this example, and more than half of that effect arises gible and assuming that there is rapid mixing between

backgrounds by mutation and recombination.during the time when only two or three lineages are
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Figure 10.—The effect of balancing selection on the mean
Figure 11.—The mean coalescence time, 
, as a functioncoalescence time, E[
]. The strength of balancing selection,

of allele frequency; U � 0.5, p � 0.5, R � 0, Sb � 32, p0 �S b, increases to the right; negative values correspond to disrup-
0.7. The thin solid curve gives the exact solution from Equa-tive selection; p0 � 0.7. The two curves are for mutation rate
tions 5. This is compared with the prediction from EquationU � 0.5 (thick curve) and 0.25 (thin curve). There is no
15 (dashed line), which assumes that allele frequency is fixed;recombination (R � 0). The straight lines are the predictions
this prediction is independent of selection. The thick curveassuming that allele frequency is fixed at p0.
shows the stationary distribution.

No movement between backgrounds: If there is no
all mean, E[
], can be estimated either by integratingrecombination or mutation between alleles (U, R � 0)
over the stationary distribution or by fixing p at its de-then the three identities given by Equations 1 change
terministic equilibrium value (Neuhauser and Kroneindependently. The between-class identity f1,1 clearly
1997).tends to zero, while the within-class identities are those

Figure 10 shows the mean coalescence time as a func-of two separate populations of size p, q, which fluctuate
tion of the strength of balancing selection. Here, U �according to a diffusion process. (Strong frequency de-
N, � � 0.5 or 0.25, and so effects are not large: balancingpendence is required to prevent loss of variation at the
selection has a substantial effect on genealogies onlyselected locus in the absence of mutation: near the
when mutation is low enough that genes rarely moveboundaries, S → p�� as p → 0, � � 1.) However, even
between backgrounds. The mean coalescence time doesthis uncoupling into a set of single-variable equations
approach the prediction from Equation 15 for large Sdoes not lead to an explicit solution. The identities
(right side of figure), but balancing selection must becould be found by a change of timescale in the standard
extremely strong for the deterministic limit to be accu-coalescent, but this does not lead to closed-form solu-
rate. That is, weak random fluctuations in allele fre-tions (Donnelly and Kurtz 1999b).
quency can substantially reduce coalescence times. NoteWeak random drift: If random drift is weak relative
that weak disruptive selection (e.g., underdominance)to mutation, recombination, and selection, then allele
reduces coalescence times slightly, because allele fre-frequencies will be close to a deterministic limit. Many
quencies tend to sweep back and forth between alterna-treatments of the effects of selection on genealogies
tive alleles (see left of graph). However, strong under-assume this limit and apply the standard structured coa-
dominance has little effect, because the population islescent (e.g., Kaplan et al. 1988, 1989; Hudson and
then near fixation.Kaplan 1995; Wakeley 2001). For the model presented

Figure 11 shows an example in which fluctuationshere, this limit corresponds to dropping the diffusion
significantly reduce mean coalescence time despiteterms (i.e., those terms involving �p or �p,p from Equation
strong selection. With S � Ns � 32, allele frequencies1) and thereby assuming that the population has always
cluster around the equilibrium of p0 � 0.7 (bell-shapedhad the same allele frequency. This approximation is
curve). The coalescence time is almost independent ofnot explicitly dependent on the strength of selection,
allele frequency, simply because populations away frombut does depend on both mutation and recombination
equilibrium are recently derived from populations closerates, which determine the rate of mixing between al-
to equilibrium (thin solid curve). In contrast, the deter-lelic classes. Under this approximation, the mean pair-
ministic prediction (dashed line) ignores the diffusionwise coalescence time is
of populations between different allele frequencies and
so depends more strongly on allele frequency. Taking
 �

pqR � p2q2(1 � R) � 4(Uc2 � pqR)2 � U(c3 � 3p2q2)
(Uc2 � pqR) � 4U 2(c1c2 � pqpq) � 8URc2pq � 4p2q2R 2

,
the value of this approximation at p0 � 0.7 gives a sub-
stantial overestimate of mean coalescence time, even

where cj � (pq j � qp j) . (15)
under such strong selection.

Figures 12 and 13 show similar results, but for muta-A similar expression can be obtained for the identity
in allelic state, which allows calculation of higher mo- tion/selection balance rather than for balancing selec-

tion. The lines to the right in Figure 12 show the pre-ments of the distribution of coalescence times. The over-



1125Selection in Fluctuating Backgrounds

Figure 12.—The effect of purifying selection on the mean
Figure 13.—The mean coalescence time, 
, as a functioncoalescence time, E[
]. The two curves are for equilibrium

of allele frequency, at mutation-selection balance, U � 3/8,frequency U/S � 1/8 (thick), 1/4 (thin). There is no recombi-
p � 0.001, R � 0, S � 3. The thin solid curve gives the exactnation (R � 0). The lines on the right are the predictions
solution from Equations 5. This is compared with the predic-assuming that allele frequency is fixed at U/S.
tion from Equation 15, which assumes that allele frequency
is fixed; this prediction is independent of selection. The thick
curve shows the stationary distribution.diction for the deterministic limit (Equation 15); as S →

∞, mean coalescence time is reduced by a factor (1 �
(U/S) � O(1/S 2)) (Charlesworth et al. 1993). This pected value, integrated over the stationary distribution,
effect of “background selection” against deleterious al- is given by Equation 10. Hence
leles is reduced substantially by random drift for S �
Ns � �3. Figure 13 shows the stationary distribution at E[ f ] �

1
1 � 4V

�
4

1 � 4V
E[Spq�[p]]

S � 3, U/S � �/s � 1/8; as for balancing selection, a
moderate degree of fluctuation around the determinis- �

1
1 � 4V

�
4V

(1 � 4V)2
E � Spq(Spq � 2(p � p)U)

(U(p � p)(q � p) � Rpq)R 	 .
tic expectation substantially reduces the effect of selec-

(18)tion in reducing mean coalescence time [here, from
1 � (U/S) � 0.875 at S → ∞ to 0.908 at S � 3]. Because the stationary distribution is known explicitly,

Rapid mixing: If mutation and/or recombination this perturbation can readily be calculated. Moreover,
are strong relative to drift (U or R � 1), then there it has a simple form when seen as a function of V. This
will be little divergence between allelic classes: � and � allows us to take the inverse Laplace transform, which
will be small, and f close to 1/(1 � 4V). First, consider shows that the distribution of coalescence times is
the case with U, S � 1 and R � 1. From Equations 8,
we see that � is augmented by the term (1 � f )/pq and E[	[
]] � Exp[�
]�1 � (
 � 1)E � Spq(Spq � 2(p � p)U)

(U(p � p)(q � p) � Rpq)R 	�
dissipated by recombination, and so is O(1/R). � is

E[
] � 1 � E � Spq(Spq � 2(p � p)U)
(U(p � p)(q � p) � Rpq)R 	 .generated by � and dissipated by recombination and (19)

also mutation at the boundaries (pq � 1/R). Hence,
� � 1/R 2. The perturbation to f is therefore only of Note that the key term E[ ] in Equation 19 is nega-
order 1/R 2. Letting f � 1/(1 � 4V) � φ the leading tive for purifying selection and positive for balancing
terms are selection.

If balancing selection is strong enough that the sta-
0 � �(1 � 4V )φ � �2Spq � 2(p � p)U �

pq
2

�p�(�pφ � 4�) � 4pqS� tionary density near the boundaries is negligible, and if
R � U, then the term involving mutation in the de-0 � �2�U (q � p)

pq
(p � p) � R � � � ((p � q)� � 2Spq� � 4(p � p)U � � pq�p�)

nominator is negligible, and
0 � �4R � �

(1 � f )
pq

. (16)
E[	[
]] � Exp[�
]�1 � (
 � 1)E �S 2pq

R 2 	�
Hence

E[
] � 1 � E �S 2pq
R 2 	 . (20)� �

V
Rpq(1 � 4V)

Thus, when linkage is loose the effect of selection
� � �

V(Spq � 2(p � p)U)
(U(p � p)(q � p) � Rpq)R(1 � 4V)

. (17) is to increase mean coalescence times by an amount
proportional to the additive variance in fitness (2S 2pq).
This can be understood as an inflation in the rate ofNote that the term U(p � p)(q � p) in the denomina-

tor of the expression for � is negligible except near random genetic drift due to inherited variation in fitness
(Hill and Robertson 1966; Santiago and Caballerothe boundaries, when Rpq � 1. The perturbation φ to

average identity is not given explicitly. However, its ex- 1995). With balancing selection, the marginal selection
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Figure 14.—The effect of balancing selection on mean Figure 15.—The effect of purifying selection on mean co-
coalescence time, plotted against recombination rate, R; U � alescence time, plotted against recombination rate, R; U �
0.05. The vertical axis shows increases over the neutral value, 0.5, p � 0.5. The vertical axis shows decreases from the neutral
E[
] � 1, on a logarithmic scale. The top thick curve shows value, 1 � E[
], on a logarithmic scale. The top thick curve
the deterministic limit, in which allele frequency is assumed shows the deterministic limit for S � 8, in which allele fre-
to be fixed at p0 � 0.7 (Equation 15). The thin solid curves quency is assumed to be fixed at p0 � 1 � (U/S) (Equation
are for Sb � 4, 8, 16, 32 (bottom to top), calculated using 15). The thin solid curves are for S � 0.5, 1, 2, 4, 8 (right
Equations 1 and 11. The dashed curves show the high recombi- side, bottom to top), calculated using Equations 1 and 11.
nation limit (Equation 19). The dashed curves show the high recombination limit (Equa-

tion 19).

coefficient S � S b(p0 � p) is zero at p � p0. However,
allele frequency fluctuates around this expectation with which is never the case for U � 0.5, even when selection
variance var(p) � 1/4S b for large S b. Hence, E[S 2pq/ is strong. This approximation is expected to be accurate
R 2] � S bp0q0/4R 2. Note that this is not the same as the only for U � 1. The large R approximation of Equa-
limit of Equation 15 as R → ∞, which is 1/4R. Allele tion 19 is more accurate (dashed lines), but systemati-
frequency fluctuations have a significant effect that can- cally underestimates the effect by �18%. Examination
not be neglected even for strong selection. of the differences in mean coalescence time between

We examine the accuracy of these approximations backgrounds, �
, �
, shows that the approximation of
by considering the effect of increasing recombination. Equations 17 breaks down near the margins (q �
Figure 14 shows the increase in mean coalescence time (1/R)). Since the stationary density is appreciable in
caused by balancing selection, plotted against recombi- this region for R � 10, much larger recombination rates
nation rate. Mutation is set to a small positive value would be needed for accuracy to be improved. As for
(U � 0.05), to ensure that a stationary distribution balancing selection, this approximation is accurate only

in cases where the effect on coalescence time is small.exists. However, mutation has a negligible effect on the
results unless linkage is tight (R � U). The increase For tight linkage, the effect of purifying selection at

first increases with selection, but then decreases (seeover the neutral value, E[
] � 1, is plotted on a log
scale, because when R is large, small effects must be Figure 15, left side). This can be seen more clearly in

Figure 16, which shows the mean coalescence time asdiscerned. As selection increases (S b � 4, 8, 16, 32,
bottom to top), mean coalescence time converges to the a function of S � Ns, with complete linkage. As selection

becomes very strong, the rare allele is driven out of thedeterministic limit (thick line; Equation 15) However,
convergence is slow for large R. There, the large R population, and so the genealogy returns toward its

form under the neutral coalescent.approximation of Equation 19 is accurate (dashed lines
to right). However, the approximation is good only for Large genealogies: We have concentrated on numeri-

cal examples for pairwise coalescence time partly be-R � 10, in which case mean coalescence time is in-
creased by at most 2.5%. The large R approximation is cause computations are then much faster, but also be-

cause the effects of fluctuations in allele frequency, andnot helpful for parameters that give a large effect.
Figure 15 shows a similar plot for the decrease in hence of selection, are primarily on the deeper parts

of the genealogy, when there are just a few ancestralmean coalescence time caused by purifying selection.
Now, mutation is set to a moderately high level (U � lineages. Here, we use Equation 5 to consider the effect

of purifying selection on the expected total length of a0.5); with weak mutation, the population would almost
always be fixed, and effects on linked variation would larger genealogy. Figure 17 shows how the expected

length depends on allele frequency and on the composi-be negligible. The deterministic limit of Equation 15
(top thick line) now performs poorly. This is because tion of the sample. If five genes of type P are sampled,

then the genealogy is much shorter when that allele isit is based on the assumption that allele frequency is
close to the deterministic equilibrium of 1 � (U/S), rare (line rising steeply from left to right); similarly, if
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Figure 16.—The effect of purifying selection on mean co-
alescence time, plotted against selection, S, for U � 0.25, 0.5,

Figure 17.—The expected total length of the genealogy1; p � 0.5. There is complete linkage (R � 0).
that connects a sample of five genes, plotted as a function of
allele frequency; the six cases J0,5 to J5,0 are shown; J0,5 increases
most steeply from left to right, J5,0 shows the opposite gradient,five copies of type Q are sampled, the genealogy is and the other four variables interpolate between these. There

shorter when Q is rare, because coalescence is much is purifying selection against Q alleles of strength S � 2; muta-
more rapid within the rarer class. However, the relation- tion is at rate U � 0.5 with p � 0.5, and there is no recombina-

tion.ship with allele frequency is quite weak for mixed sam-
ples, because coalescence occurs more slowly within
each allelic class, and so lineages are likely to move

1). Here, we allow allele frequencies at the selectedbetween classes by mutation. In this example, there is
locus to evolve as a diffusion process. This leads to a setpurifying selection S � Ns � 2. However, the patterns
of coupled equations, each being the sum of two terms:for a neutral locus, or for other kinds of selection, are
a diffusion that allows for random changes in allelesimilar.
frequency through time and a recursion that describesFigure 18 shows the net effect of purifying selection,
the structured coalescent conditional on allele fre-S � Ns, on the expected total length, for up to n � 50
quency. We find that quite small stochastic fluctuationsgenes. Mutation rate is U � N� � 0.5, and there is no
in the frequencies of alternative genetic backgroundsrecombination. Equation 14 shows that the net effect
substantially reduce the effects of selection.of selection can be separated exactly into a sum, the jth

In this article, we have considered only selection onterm being due to the time when j lineages are present.
a single biallelic locus and have for the most part sam-Thus, Figure 18 shows the total effect on genealogies
pled two genes from the linked neutral locus. Moreover,with 50 genes (top points) and the component effects
we have assumed that the selected locus has reached aon genealogies with up to 2, 3, 4, 5, . . . genes (bottom
stationary state, so that properties of the genealogy suchseries of points). As explained above, most of the per-
as mean coalescence time can be taken to be functionsturbation due to selection accrues when just a few
of allele frequency only. In principle, it is straightfor-lineages are present. Overall, the effects are small rela-
ward to extend the method. Nonstationary processestive to the expected total tree length under neutrality
can be described by taking the variables to be functions(8.96 for n � 50 genes). The curves on the right give
of time as well as allele frequency and following themthe simple approximation for large S, that effective pop-
using the same backward diffusion as in Equations 1.ulation size and hence tree length is reduced by a factor
For example, one might ask about the genealogy imme-(1 � (U/S)). This approximation is accurate only for S
diately after a substitution has occurred by chance: Is theso large that the net effect is small.
genealogy shortened in the same way as with a selective
sweep?

DISCUSSION Allowing multiple loci or more alleles under selection
requires that the variables be functions of genotypeWe have used the equations set out by Kaplan et al.
frequencies, and this would greatly slow numerical cal-(1988; see also Hudson and Kaplan, 1988) to find the
culations. More variables would also need to be fol-effects of weak selection (Ns � 1) on genealogies at a
lowed, because genes can find themselves in many morelinked neutral locus. These genealogies are produced
genetic backgrounds. Extension to larger samples ofby the structured coalescent process, in which genes
genes at the neutral locus is simpler (Kaplan et al. 1988).move between the genetic backgrounds defined by the
Now, we follow the relationship between a set of j genesselected locus as a result of both recombination and
in background Q and k genes in background P ; for amutation of the selected alleles. Most previous studies
sample of n genes, this requires (n � 1)(n � 4)/2have assumed that allele frequencies evolve determinis-

tically and so are restricted to strong selection (Ns � variables. This does not raise substantial difficulties, be-
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since they shared a common ancestor. This is not a
property of the genealogy alone and is not the same as
the classical “identity by descent”).

We see the main advantage of our method as being
amenable to analytical approximations that might allow
progress in understanding more complex cases. In prin-
ciple, it would be possible to couple a diffusion process
to the structured coalescent so as to generate the distri-
bution of genealogies conditional on observed data (for
example, observations of neutral mutations carried by
sampled genes). However, this would be computation-
ally impractical for more than a single selected locus
and so would restrict attention to very simple hypothe-
ses. Our hope is primarily to find general results thatFigure 18.—The effect of purifying selection, S, on the
will help us to understand how diverse evolutionaryexpected total length of a genealogy, �E[ J ]. The graph shows
processes influence sampled sequences.the reduction in E[ J ] below the neutral value, �n�1

j�1 (1/j). The
top large dots are for n � 50 genes; the bottom series of We have shown that the expected change in certain
smaller dots are for n � 2, 3, 4, 5 genes. For comparison, properties of a genealogy caused by selection is equal
E[ J ] � 8.96 for n � 50 genes and 2, 3, 3.67, 4.17 . . . for 2,

to the covariance between those properties and fitness.3, 4, 5 . . . genes. The curves on the right are based on
Applying Robertson’s (1966) “secondary theorem” [ora reduction in effective population size by (1 � U/S); this

prediction applies when S is large. Mutation rate is U � 0.5, Price’s (1970) equation] in this way is unusual in several
with p � 0.5. respects. First, the argument applies to the expected

value of a randomly distributed variable. Second, the
argument is applied to samples of genes, rather than

cause one can break up the calculation into sets of to individuals. Third, the phenotype of the sample of
equations involving 2, 3, . . . n genes at a time. Direct genes is taken to be a measure of their joint ancestry—in
solutions of the differential equations (Equation 5) are this instance, the expected length of the genealogy.
feasible up to five or so genes, and much larger numbers However, one can see that Price’s (1970) arguments
can be approximated by assuming that coalescence from do apply with these extensions: a sample of genes can
n genes down to approximately five genes occurs be connected with their offspring in the next genera-
quickly, relative to the timescale of the diffusion process

tion, and the fitness of the whole sample can be seen
(Figure 9).

as covarying with its genealogical properties. By includ-Most existing results assume that allele frequencies
ing the transmission terms in Price’s (1970) equation,evolve deterministically (e.g., Kaplan et al. 1988, 1989;
one can derive the whole of Equation 14: the expectedHudson and Kaplan 1995; Wakeley 2001). Our nu-
state of the offspring sample changes as a result of themerical results show that this deterministic approxima-
extra time step (first term) and as a result of coalescencetion is accurate only for quite strong selection: moderate
(second term). It may be fruitful to apply this stochasticfluctuations, reflected in dispersion of the stationary
extension of Price’s equations to other problems.distribution, are sufficient to reduce effects substantially

Recent simulations suggest that the effects of selec-below those predicted. An obvious extension for the
tion at one site on the genealogy are surprisingly weakfuture is to make an expansion in powers of 1/Ns, so
(Golding 1997; Neuhauser and Krone 1997; Prze-as to improve on the deterministic approximation. The
worski et al. 1999; Williamson and Orive 2002). Ofopposite approach is to examine the effects of weak
course, the frequencies of selected alleles are stronglyselection. Krone and Neuhauser (1997; Theorem 4.26)
affected: purifying selection eliminates allelic variation,show that the effect of purifying selection and symmetric
and balancing selection maintains it. Thus, observationsmutation on coalescence times is O((Ns)2) (see Figure
on biased codon usage can give direct estimates of Ns12). This result was obtained by showing that various
(McVean and Charlesworth 2000), because the fre-terms, each corresponding to an alternative topology
quencies of alternative bases at the third position areof the ancestral graph, cancel. Under our approach, we
themselves under selection through their effects onsee immediately from Equation 19 that the first-order
translation. However, the structure of the genealogycontribution is zero: to leading order, � is an odd func-
is typically affected very little by selection, and thus,tion centered on P � 0.5, and so E[Spq�] � 0 for a
observations of this genealogy, or of closely linked neu-symmetrical stationary distribution. (It is not possible
tral variation, tell us little about the action of selection.for us to compare with Krone and Neuhauser’s Theo-
This is a serious practical limitation, because we oftenrem 4.19, because this gives the probability that two
do not know the actual nucleotides that cause fitnessindividuals are identical in the sense that they have

experienced no mutations that alter their allelic class differences and so must base our inferences on synony-
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mous or noncoding variation that we assume to be neu- or the ancestral selection graph, the view that purifying
selection at a single site has small effects on genealogiestral.

Przeworski et al. (1999) describe the “competition is based on quite limited numerical results.
We can identify three distinct reasons why purifyingof alleles on a genealogy” whose structure is largely

independent of the distribution of the selected alleles. selection should have little effect on genealogies. First,
even when selection is strong relative to drift, the effectThis description is somewhat misleading, because the

genealogy does depend strongly on the allelic state of of a single site is small. With complete linkage and two
selected alleles, effective population size is reduced bythe sample, even when no selection is acting (e.g.,

Figure 1): genes in the same allelic state are more likely a factor (1 � (�/s)) for large Ns (Charlesworth et
al. 1993). This is a consequence of the fact that if backto share a recent common ancestor. However, when

genealogies are averaged over the possible allelic con- mutation is negligible, and if the fittest class is to be
maintained indefinitely, then only the fraction (1 �figurations and over the stationary distribution of allele

frequencies, the result is close to the neutral coalescent. (�/s)) of the population that is free of deleterious muta-
tions can contribute in the long term. Since deleteriousSince we typically do not know which alleles influence

fitness, we can usually observe only this average. alleles are likely to be rare at any one site, the effect
on neutral variability will be small. Nevertheless, theTo examine the claim that selection has small effects

on the genealogy, even at the selected locus, we must cumulative effects of many sites can be large. Averaging
over a genetic map of length R, the effective populationdistinguish balancing from purifying selection. In the

former case, there can be very strong effects provided size is reduced by Exp[��i �i/R], a factor that depends
on the total mutation rate per map distance (Hudsonthat mutation rates are extremely low (U � 1), since

this allows time for the two genetic backgrounds to and Kaplan 1995).
Second, for a given mutation rate, a significant effectdiverge considerably. Such divergence can of course be

observed directly, for example, at self-incompatibility is seen only for intermediate selection strengths. For
strong selection, deleterious mutations become negligi-loci in plants or the major histocompatibility locus in

mammals (Hughes 1999). Extension of this argument bly rare, while for weak selection, the effect is only of
second order in S (Figure 12; Neuhauser and Kroneto multiple balanced polymorphisms shows that in a

sufficiently large population, and with sufficiently stable 1997). The maximum possible effect increases with mu-
tation rate (Figure 16), because the frequency of delete-selection, coalescence times can become extremely

long. However, random drift in even large populations rious mutations is increased. However, this effect is off-
set by the more frequent movement of genes betweengreatly reduces this effect (Barton and Navarro

2002), because balancing selection cannot maintain ev- the two alternative backgrounds, which reduces the co-
variance between the allele frequency in the sample,ery combination of selected alleles at constant frequency.

Similarly, our single-locus results (Figure 10) show that and the structure of the genealogy. For fixed and large
S, mean coalescence time decreases in proportion to Ueven with Nsb � 20, the effect on neutral variability can

be more than halved. In reality, fluctuations in selection (Figure 16, right side), but for weak selection, it is almost
independent of mutation rate (Figure 16, left side).are likely to further reduce the effect of balancing selec-

tion below the ideal case of an extremely large popula- Presumably, the effect of increased frequency of delete-
rious alleles and of faster mixing between backgroundstion under constant conditions.

Recent discussions have concentrated on the effects counterbalances when S is small.
Finally, the effect of selection on large genealogies isof selection against deleterious mutations on genealogi-

cal structure. Purifying selection is of most general im- appreciable only deep in the tree, when just a few lin-
eages segregate. This is because lineages rapidly co-portance, because it acts on all functional sequences

and because its effects can be substantial in aggregate, alesce down to a small number of ancestors, and so the
fluctuations in allele frequency that mediate the effectsat least for organisms with a high genomic mutation rate

and in regions of low recombination (Charlesworth et of selection have little influence during this period.
Consider the perturbation to the expected total lengthal. 1993). Purifying selection on a single site has surpris-

ingly weak effects. For example, Williamson and Orive of the genealogy, which is plotted against the strength
of purifying selection in Figure 18, for U � 0.5. For 50(2002, Table 4) found that with a total mutation rate

U � 5, the expected total length of a genealogy con- genes, the greatest reduction below the neutral value is
by 4.2%, when S � Ns � 3. About half of this reductionnecting 50 genes is reduced by at most 28%, at S �

Ns � 5. (We express U in terms of our model of revers- is due to the effects of selection during the time when
fewer than six lineages are present. Overall, the propor-ible mutation; Williamson and Orive used 4N�Q→P �

4N�P→Q � 4Up � 10; their 2N� is equivalent to our 2S .) tionate reduction in tree length is about the same for
small and large samples. (In this example, pairwise co-Przeworski et al. (1999) used a much lower mutation

rate (U � 0.1) and observed a reduction of at most alescence time is reduced by at most 5.5%.) Statistics
such as the length of external branches are expected0.53% at S � 3. However, because of the computational

difficulties of simulations of either the whole population to be much less sensitive to the effects of selection, an



1130 N. H. Barton and A. M. Etheridge

Hughes, A. L., 1999 Adaptive Evolution of Genes and Genomes. Oxfordargument supported by the simulations of Przeworski
University Press, Oxford.

et al. (1999) and Williamson and Orive (2002, Tables Kaplan, N. L., T. Darden and R. B. Hudson, 1988 The coalescent
3 and 4). process in models with selection. Genetics 120: 819–829.

Kaplan, N. L., R. R. Hudson and C. H. Langley, 1989 The hitch-The methods that we have developed in this article
hiking effect revisited. Genetics 123: 887–899.suggest several avenues for future research. First, to Kingman, J. F. C., 1982 The coalescent. Stoch. Proc. Appl. 13: 235–

what extent does selection distort the topology of the 248.
Krone, S. M., and C. Neuhauser, 1997 Ancestral processes withgenealogy, rather than just changing its length? An un-

selection. Theor. Popul. Biol. 51: 210–237.derstanding of such distortions is necessary if we are to
McVean, G. A. T., and B. Charlesworth, 2000 The effects of Hill-

be able to distinguish the effects of different kinds of Robertson interference between weakly selected sites on patterns
of molecular evolution and variation. Genetics 155: 929–944.selection from their effects on neutral variability. Sec-

Maynard Smith, J., and J. Haigh, 1974 The hitch-hiking effect ofond, analytical approximations can be developed for
a favourable gene. Genet. Res. 23: 23–35.

strong selection and for large genealogies, which may Nagylaki, T., 1989 Gustave Malécot and the transition from classical
to modern population genetics. Genetics 122: 253–268.allow a better understanding of the joint effects of multi-

Neuhauser, C., 1999 The ancestral graph and gene genealogy un-ple loci on genetic variability. Finally, it may be possible
der frequency-dependent selection. Theor. Popul. Biol. 56: 203–to develop the idea that selection can act on samples 214.

of genes, and their genealogical relationships, in the Neuhauser, C., and S. M. Krone, 1997 The genealogy of samples
in models with selection. Genetics 145: 519–534.same way that it acts on individual genes and their phe-

Price, G. R., 1970 Selection and covariance. Nature 227: 520–521.notypes. This suggests an intriguing link between the Przeworski, M., B. Charlesworth and J. D. Wall, 1999 Genealo-
separate literatures on the stochastic evolution of genea- gies and weak purifying selection. Mol. Biol. Evol. 16: 246–252.

Robertson, A., 1966 A mathematical model of the culling processlogical relationships and on the deterministic evolution
in dairy cattle. Anim. Prod. 8: 95–108.of groups of related individuals.

Rouhani, S., and N. H. Barton, 1987 Speciation and the “shifting
balance” in a continuous population. Theor. Popul. Biol. 31:We are grateful to the Erwin Schrödinger International Institute
465–492.for Mathematical Physics in Vienna for support during winter 2002/

Santiago, E., and A. Caballero, 1995 Effective size of populations2003, where this manuscript was completed. We also acknowledge
under selection. Genetics 139: 1013–1030.support from the Engineering and Physical Sciences Research Council

Schulman, L., 1981 Techniques and Applications of Path Integration.and Biotechnology and Biological Sciences Research Council (grant
John Wiley & Sons, New York.MMI09726) and thank the referees for their helpful comments. Slade, P. F., 2000a Simulation of selected genealogies. Theor. Popul.
Biol. 57: 35–50.

Slade, P. F., 2000b Most recent common ancestor probability distri-
butions in gene genealogies under selection. Theor. Popul. Biol.

LITERATURE CITED 58: 291–305.
Slade, P. F., 2001 Simulation of ‘hitch-hiking’ genealogies. J. Math.Barton, N. H., 1998 The effect of hitch-hiking on neutral genealo-

Biol. 42: 41–70.gies. Genet. Res. 72: 123–133.
Slatkin, M., 1996 Gene genealogies within mutant allelic classes.Barton, N. H., and A. Navarro, 2002 Extending the coalescent to

Genetics 142: 579–587.multilocus systems: the case of balancing selection. Genet. Res.
Slatkin, M., 2001 Simulating genealogies of selected alleles in a79: 129–139.

population of variable size. Genet. Res. 78: 49–58.Barton, N. H., A. M. Etheridge and A. K. Sturm, 2003 The distri-
Wakeley, J., 2001 The coalescent in an island model of populationbution of coalescence times in a fluctuating population. Ann.

subdivision with variation among demes. Theor. Popul. Biol. 59:Appl. Probab. (in press).
133–144.Charlesworth, B., M. T. Morgan and D. Charlesworth, 1993

Williamson, S. M., and M. E. Orive, 2002 The genealogy of aThe effect of deleterious mutations on neutral molecular varia-
sequence subject to purifying selection at multiple sites. Mol.tion. Genetics 134: 1289–1303.
Biol. Evol. 19: 1376–1384.Darden, T., N. L. Kaplan and R. R. Hudson, 1989 A numerical

Wolfram, S., 1996 The Mathematica Book. Wolfram Media/Cam-method for calculating moments of coalescent times in finite
bridge University Press, Cambridge, UK.populations with selection. J. Math. Biol. 27: 355–368.

Donnelly, P. J., and T. G. Kurtz, 1999a Genealogical processes
Communicating editor: W. Stephanfor Fleming-Viot models with selection and recombination. Ann.

Appl. Probab. 9: 1091–1148.
Donnelly, P. J., and T. G. Kurtz, 1999b Particle representations for

measure-valued population models. Ann. Probab. 27: 166–205.
Donnelly, P. J., M. Nordborg and P. Joyce, 2001 Likelihoods and APPENDIX: NUMERICAL METHODS

simulation methods for a class of non-neutral population genetics
models. Genetics 159: 853–867. Darden et al. (1989) described a numerical method

Fearnhead, P., 2001 Perfect simulation from population genetic for solving Equation 1 and gave some results for themodels with selection. Theor. Popul. Biol. 59: 263–281.
case of two genes. Because they did not specify boundaryGolding, G. B., 1997 The effect of purifying selection on genealo-

gies, pp. 271–285 in Progress in Population Genetics and Human conditions, they could not use standard algorithms. In-
Evolution (IMA Volumes in Mathematics and Its Applications, stead, they approximated the differential equations onVol. 87), edited by P. Donnelly and S. Tavare. Springer-Verlag,

a discrete grid and thus obtained a set of linear equa-New York.
Hill, W. G., and A. Robertson, 1966 The effect of linkage on limits tions that could be solved using matrix methods. This

to artificial selection. Genet. Res. 8: 269–294. method is similar to solving the exact Wright-FisherHudson, R., 1990 Gene genealogies and the coalescent process.
model for a finite population of 2N genes (see Fig-Oxf. Surv. Evol. Biol. 7: 1–44.

Hudson, R. B., and N. L. Kaplan, 1988 The coalescent process in ure 1).
models with selection and recombination. Genetics 120: 831–840.

Since we have specified the boundary conditionsHudson, R. R., and N. L. Kaplan, 1995 Deleterious background
selection with recombination. Genetics 141: 1605–1617. (Equations 2), we can solve the equilibrium version of



1131Selection in Fluctuating Backgrounds

Equation 1 using the built-in algorithms in Mathematica With more than five or so genes, the differential equa-
(Wolfram 1996), at least for up to five or so genes. We tions become extremely sensitive to the values near the
proceed iteratively. Initially, all identities are set to zero. boundaries, and so “shooting methods” fail. This insta-
At the nth stage of the iteration we solve the stationary bility arises because the terms due to coalescence grow
version of Equation 1 subject to the boundary conditions quadratically with the number of genes and so become
of Equations 2, using a “shooting method”; the bound- extremely large relative to the diffusion terms that
ary conditions and the contribution from mutation and smooth the solution. This suggests an alternative ap-
recombination involve identities that are provided by proximation. We begin by calculating the identities
our trial solution. Thus, for example, to solve for f n

0,2, among up to (say) five genes using the methods de-
we set the boundary condition f n

0,2(0) to the value given scribed above. To calculate identities among n � 6
by Equations 2 with f n�1

1,1 and choose two different (nega- genes, we first discard the diffusion terms (i.e., the last
tive) values of �f0,2(0)/�p, � and �, say. This gives solu- two terms in Equation 1). This is equivalent to assuming
tions f n

0,2,1 and f n
0,2,2. Write z[�] and z[�] for the corre- that allele frequency fluctuations are negligible over the

sponding values of (1 � 4V ) f0,2(1) � 2Uq�p f0,2 (1). Since short timescale set by coalescence among the n lineages.
the correct choice of �f0,2(0)/�p, �, say, must give z[�] � This gives a set of linear equations: 0 � f5 � B. f 0

6, where
1, and since we are dealing with a linear equation, the B is a matrix, and f5 is the vector of identities among
solution that we seek is given by setting � � ((1 � z[�])/ sets of five genes, which we have already calculated. A
(z[�] � z[�]))f n

0,2,1 � ((z[�] � 1)/(z[�] � z[�]))f n
0,2,2. correction f 1

6 to this solution f 0
6 can now be calculated

The iteration is repeated until the mean square change by including the diffusion terms 0 � B. f 1
6 � L�pf 0

6, where
in the estimates is less than some small threshold. L � 2(U(p � p) � Spq) � (pq/2)�p. By making repeated

For a sample of two genes, this procedure is successful
corrections in this way, we obtain an asymptotic series

after only a few iterations. For larger samples, the differ-
f 0

6, f 1
6, f 2

6. . . . In numerical calculations, the first fewential equations are less stable, and so it is necessary to
terms converge toward the correct solution (calculatedintegrate over a series of separate intervals. The algo-
as above), but further corrections lead to divergence.rithm we used is as follows. Starting at some small ε �
A satisfactory approximation can be found by taking1, integrate forward as described above. By making a
just the first correction, f 1

n. We have checked that thissmall change in the initial condition, obtain a second
is close to the solution calculated using the methodsolution that is close to the first for small p, but that
described above, at least for small n. Once a solutionmay diverge as p becomes large. Choose a point p1 at
for n genes is found, the procedure can be repeatedwhich these two trial solutions are close to each other;
for n � 1 genes, and so on. The method is fast, andwe thus have an accurate solution for ε � p � p1. Repeat
allows calculations for up to 100 or so genes. One furtherthe procedure starting from the opposite boundary (p �
modification is required. Slight inaccuracies in solutions1 � ε), obtaining a solution valid for p2 � p � 1 � ε.
for a few (n � 5) genes tend to accumulate as fine-scaledIf p2 � p1, splice the two solutions together at the point
fluctuations in solutions for more genes. We thereforewhere they differ least. Otherwise, repeat the procedure,
force smooth solutions by fitting an eighth-order poly-working in from p1 to p3, from p2 to p4, and so on until

the solutions starting from left and right overlap. nomial solution for each n.




